The article presents an analysis of the possibility of using pattern recognition programs (persons, objects, animals, etc.) to establish the circumstances of the crime. Moreover the article presents legal grounds for the recognition programs using. There are 2 sources of information. The first source - the data obtained from the internet (including social networks), the second - the images obtained using intelligent security systems. It is noted here that the recognition technique is based on the convolutional neural networks using. In addition, the article gives examples of programs that have been developed for pattern recognition and training of neural networks. It is concluded that, despite of the fact that many programs were originally developed for commercial purposes, they can be successfully used during the production of search activities in particular and during the law-enforcement activity in general.
biometric characteristics, neural network, the Internet, images, recognition, investigation of crimes
1. Kaye D. Report of the Special Rapporteur on the promotion and protection of the right to freedom of opinion and expression. URL: https://ru.scribd.com (data obrascheniya: 24.02.2017).
2. Deklaraciya o svobode obscheniya v Internete, prinyataya komitetom ministrov soveta Evropy. URL: http://medialaw.asia/document/-2358 (data obrascheniya: 24.02.2017).
3. Habrahabr: Chto takoe svertochnaya neyronnaya set'. URL: https://habrahabr.ru/post/309508/ (data obrascheniya: 24.02.2017).
4. Labeled Faces in the Wild. URL: http://vis-www.cs.umass.edu/lfw/index.html (data obrascheniya: 24.02.2017).
5. YouTube Faces DB. URL: https://www.cs.tau.ac.il/~wolf/ytfaces/ (data obrascheniya: 24.02.2017).
6. Schroff F., Kalenichenko D., Philbin J. FaceNet: A Unified Embedding for Face Recognition and Clustering. URL: https://arxiv.org/pdf/1503.03832.pdf (data obrascheniya: 24.02.2017).
7. Amazon Rekognition. URL: https://aws.amazon.com/ru/rekognition/ (data obrascheniya: 24.02.2017).
8. Farfade S. S., Saberian M., Li L.-J. Multi-view Face Detection Using Deep Convolutional Neural Networks. URL: https://arxiv.org/pdf/1502.02766.pdf (data obrascheniya: 24.02.2017).
9. MIT Technology Review. URL: https://www.technologyreview.com (data obrascheniya: 24.02.2017).
10. FindFace.Pro. URL: https://findface.pro/ru/ (data obrascheniya: 24.02.2017).
11. Face-Intellekt. URL: http://www.itv.ru/products/intellect/faceintellect/ (data obrascheniya: 24.02.2017).
12. Vokord. URL: http://www.vocord.ru/directions/face_detection/ (data obrascheniya: 24.02.2017).
13. Glavnoe upravlenie MVD RF po Sverdlovskoy oblasti // Zakupka № 016210002131600011. URL: http://zakupki.gov.ru (data obrascheniya: 24.02.2017).
14. FindFace.ru. URL: https://findface.ru (data obrascheniya: 24.02.2017).
15. Wen Y., Zhang K., Li1 Z., Qiao Y. A Discriminative Feature Learning Approach for Deep Face Recognition. URL: http://ydwen.github.io/papers/WenECCV16.pdf (data obrascheniya: 24.02.2017).